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The STEP family of protein tyrosine phosphatases is highly
enriched within the CNS. Members of this family are alterna-
tively spliced to produce both transmembrane and cytosolic
variants. This manuscript describes the distinctive intracellular
distribution and enzymatic activity of the membrane-associated
isoform STEPg,. Transfection experiments in fibroblasts, as
well as subcellular fractionations, sucrose density gradients,
immunocytochemical labeling, and electron microscopy in
brain tissue, show that STEPg;, is an intrinsic membrane protein
of striatal neurons and is associated with the endoplasmic
reticulum. In addition, structural analysis of the novel N-terminal
region of STEPg, reveals several motifs not present in the
cytosolic variant STEP,s. These include two putative trans-

membrane domains, two sequences rich in Pro, Glu, Asp, Ser,
and Thr (PEST sequences), and two polyproline-rich domains.
Like STEP,q, STEPg, is enriched in the brain, but the recombi-
nant protein has less enzymatic activity than STEP 4. Because
STEP,¢ is contained in its entirety within STEPg, and differs
only in the extended N terminus of STEPg,, this amino acid
sequence is responsible for the association of STEPg, with
membrane compartments and may also regulate its enzymatic
activity.
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Protein tyrosine phosphorylation plays a central role in neuronal
development and function. Tyrosine phosphorylation has been
implicated in axonal navigation (Winslow et al., 1995; Desai et al.,
1996; Krueger et al., 1996), growth cone elongation (Maness et al.,
1988), synapse formation (Qu et al., 1990; Cudmore and Gurd,
1991), cell-cell or cell-extracellular matrix interactions (Atashi et
al., 1992; Doherty and Walsh, 1992), and differentiation (Girault
et al., 1992; Sahin and Hockfield, 1993; Walton et al., 1993; Zhang
and Longo, 1995). It is also clear that the biological effects of
neurotrophic factors on neuronal survival and differentiation are
partly attributable to regulating tyrosine phosphorylation
(Cordon-Cardo et al., 1991; Kaplan et al., 1991; Klein et al., 1991;
Schlessinger and Ullrich, 1992). These and other observations
have stimulated efforts to identify novel neuronal protein tyrosine
phosphatases (PTPs) and protein tyrosine kinases (PTKs) and to
characterize their functions within the CNS (for review, see Wal-
ton and Dixon, 1993; Naegele and Lombroso, 1994; Bult et al.,
1995).

The PTPs are classified on the basis of their structural organi-
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zation and are broadly divided into receptor-like or intracellular
PTPs (for review, see Fischer et al., 1991; Tonks et al., 1991;
Charbonneau and Tonks, 1992). The STEP family comprises
intracellular PTPs enriched within the basal ganglia and related
structures (Lombroso et al., 1991, 1993; Boulanger et al., 1995;
Sharma et al., 1995). Immunocytochemical and biochemical stud-
ies have demonstrated that the STEP family of polypeptides
includes a group of lower molecular weight (MW) proteins en-
riched in cytoplasm and a group of higher MW proteins associated
with particulate fractions (Lombroso et al., 1993; Boulanger et al.,
1995). We reported previously the isolation of several STEP-
related cDNAs (Li et al., 1995; Sharma et al., 1995). The present
study was undertaken to better understand the structural and
functional characteristics of one of these clones, STEP,;.

A major finding of this work is that STEP, is targeted to the
endoplasmic reticulum (ER) of neurons. Outside of the nervous
system, PTPs have been identified that are targeted to the cy-
toskeleton (Gu et al., 1991; Yang and Tonks, 1991; Sawada et al.,
1994), the perinuclear region (Cool et al., 1990; Faure and Posner,
1993), the plasma membrane of neurosecretory granules (Soli-
mena et al., 1996), and the nucleus (McLaughlin and Dixon, 1993;
Flores et al., 1994). To date, the subcellular localization to the ER
of two intracellular PTPs has been reported (Frangioni et al.,
1992; Woodford-Thomas et al., 1992; Lorenzen et al., 1995). The
present work is notable in that it is the first demonstration of such
a localization within the CNS and includes electron microscopic,
biochemical, and immunocytochemical data.

MATERIALS AND METHODS
Reagents. All reagents and chemicals were obtained from Sigma (St.
Louis, MO) unless otherwise indicated.

Sequence analysis. Sequence analysis of STEPy, was performed using
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the MacVector sequence analysis software (Eastman Kodak, New Haven,
CT), and homologies with other sequences were determined using the
GCG software package (University of Wisconsin). To determine PEST
sequence scores, the PEST-FIND program (Rogers et al., 1986) was
obtained through the generosity of Dr. M. Rechsteiner (University of
Utah).

Northern analysis. Poly(A") RNA was obtained from different mouse
tissues, and ~2 g was electrophoresed on a 1.2% agarose—formaldehyde
gel, transferred to nylon membrane, and fixed by UV irradiation (blot
obtained from Clontech). A STEP,-specific probe was generated using
PCR amplification and was 3?P-randomly primed. Primers used to gen-
erate this 327 bp probe were 5-AGCTCG GATCCA CTAGTA
ACGGCC-3' (sense oligomer, nucleotides 1-24) and 5'-ACATTT CTT-
TGT CGACGT CCACCG-3' (antisense oligomer, nucleotides 304-327).
Hybridization was performed under stringent conditions as described
(Lombroso et al., 1991). Films were exposed overnight at —80°C with
intensifier screens.

Filters were stripped and reprobed using a cDNA for a 28 S ribosomal
protein to compare amounts of RNA loaded per lane. Equivalent
amounts of mRNA were loaded in all lanes, except for a slight under-
loading of spleen. However, prolonged exposure (1 week) did not reveal
STEP mRNA transcripts in this tissue. This is consistent with previous
Northern analyses using the full-length STEP,; cDNA in which no STEP
transcripts were detected in spleen after 2 week exposures (Lombroso et
al., 1991).

Immunoblotting. Ten percent SDS—polyacrylamide gels were used ac-
cording to the method of Laemmli (1970) and Towbin et al. (1979). Adult
female Long Evans rats were killed and decapitated and their brains
rapidly removed. For total brain homogenates, CNS tissue was homoge-
nized with a Teflon homogenizer in glass at a speed of 2000 rpm for 10
strokes in homogenization buffer (0.32 M sucrose, 4 mm HEPES, pH 7.3,
1 mm phenylmethylsulfonyl fluoride (PMSF), 10 mm EDTA, 1 mMm
benzamidine, 0.2 mg/ml aprotinin), and protein concentrations were
determined using the method of Bradford (1976). Protein samples were
aliquoted and stored at —80°C until further processed.

Antibodies included a monoclonal antibody generated against STEP
isoforms (23EY), diluted 1:2000 (Boulanger et al., 1995); a rabbit poly-
clonal antibody generated against the synaptic vesicle protein synapto-
physin (p38), diluted 1:250 (kindly provided by Dr. R. Jahn, Yale Uni-
versity School of Medicine); and a rabbit polyclonal antibody generated
against the ER protein a-calnexin, diluted 1:250 (kindly provided by Dr.
A. Helenius, Yale University School of Medicine). The specificity of the
STEP monoclonal antibody (23E5) has been established previously by the
loss of immunoreactivity on both Western blots and immunohistochem-
istry after preabsorption with STEP fusion protein or the peptide used as
the immunogen (Boulanger et al., 1995).

Brain cell fractionation was adapted from Huttner et al. (1983) to
obtain P1, P2, P3, S3, LP1, LP2, and LS2. Continuous sucrose gradients
were performed following the protocol of Walch-Solimena et al. (1993).
In brief, P3 and LP2 pellets were resuspended in 0.32 M sucrose buffer
and layered on top of a continuous sucrose gradient (0.4-2 m). Gradients
were ultracentrifuged for 5 hr at 65,000 X g at 4°C. Aliquots were
removed and analyzed for refractive index calculation for verification of
the density gradient. Samples were stored at —80°C until further analysis.

To determine the nature of the association of STEP; with membrane
fractions, P3 pellets were washed in different buffers and ultracentrifuged,
and the resulting pellet and supernatants were analyzed by immunoblot-
ting. Approximately 1 mg of the P3 pellet was resuspended in 0.32 M
sucrose, 10 mm HEPES and either 1 m NaCl, 0.1 M Na,CO3, pH 11.5, 2%
Triton X-100, or 1% SDS was added to each tube. Samples were then
incubated on ice for 30 min and ultracentrifuged at 200,000 X g for 1 hr
(Fujiki et al., 1982). Equivalent amounts of supernatant and pellets were
analyzed for STEP,; by immunoblot.

Deglycosylation. Deglycosylation of brain membrane fractions were
essentially as described previously (Naegele and Barnstable, 1991). P3
and LP2 fractions were diluted to a final concentration of 1 mg/ml in
incubation buffer (100 mm potassium phosphate, pH 7.9, 25 mm EDTA,
1% Triton X-100, 0.2% SDS, 1% B-mercaptoethanol, 0.5 mM PMSF),
boiled for 3 min, and cooled on ice. After the addition of 25 U of
N-glycosidase F (Boehringer Mannheim, Indianapolis, IN), the samples
were incubated overnight at 37°C with shaking. Control samples were
treated identically except that the enzyme was omitted. Samples (50 ug)
were loaded onto 10% SDS-polyacrylamide gels, transferred to nitrocel-
lulose, and immunoblotted with anti-STEP antibody (23E5) or anti-
synaptophysin antibodies.
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Transfections. The open reading frames (ORFs) of STEP; and STEP
were amplified using PCR with clone-specific primers containing an Xbal
restriction site. Amplified fragments were placed in both sense and
antisense orientation at the unique Xbal site of the eukaryotic expression
vector pRc/CMV (In vitrogen, San Diego, CA) and checked for proper
orientation by restriction enzyme digestions. DNA was purified by two
cesium chloride ultracentrifugations before use in transient transfections
of Chinese Hamster Ovary (CHO) cells using 10 ug of plasmid DNA with
30 pl of lipofectin (1 mg/ml, Life Technologies, Grand Island, NY) as
described previously (Solimena et al., 1993).

Immunohistochemistry. A STEP,-specific antibody was generated by
immunizing rabbits with a 20 amino acid synthetic peptide present in
STEP,, and absent in STEP,, (amino acids 36-55) (Fig. 14). Crude
antiserum from rabbit “Nod” was affinity-purified as follows: antiserum
was diluted twofold in 0.1 M Na,COj;, pH 7.2 and centrifuged at 10,000 X
g for 20 min, and total IgG was isolated on a G-protein column (BioRad,
Melville, NY). The eluant was subsequently affinity-purified on a STEP;
fusion protein column and dialyzed extensively before use. CHO cells
were transiently transfected with either STEP,, or STEP,, cDNA and
were fixed and processed for immunocytochemistry as described previ-
ously (Cameron et al., 1991). For immunohistochemical analyses, dilu-
tions for Nod ranged from 1:10 to 1:400, and for the monoclonal antibody
23ES, which recognizes all isoforms isolated to date, the dilution was 1:80.
Secondary antibodies were rhodamine-conjugated goat anti-rabbit or
anti-mouse IgG at 1:50 dilution. Because the Nod antiserum does not
stain STEP isoforms in Western blot experiments, the monoclonal was
used for those experiments (Boulanger et al., 1995).

A marker for the ER, protein disulfide isomerase (PDI) (mouse
monoclonal anti-PDI, clone 1D3, StressGen, Sidney, Canada) was colo-
calized with STEP4; by two-color immunofluorescent staining in two
adult rats. The CNS was fixed by transcardiac perfusion, and staining was
performed as described previously, with slight modifications (Dunn et al.,
1995; Raghunathan et al., 1996). Sections were incubated in a cocktail of
Nod (1:200) and anti-PDI (1:600) overnight at RT. After extensive
washing, sections were labeled with a cocktail of secondary antibodies;
PDI immunoreactivity was detected with a horse anti-mouse IgG-Texas
Red (1:500, Vector, Burlingame, CA), and STEP;, was detected with a
biotinylated goat anti-rabbit IgG (1:300, Vector), followed by
streptavidin-FITC (1:1000, Vector). After extensive washes, sections were
coverslipped in Vectashield (Vector) and photographed on a Zeiss Ax-
iophot fluorescence photomicroscope.

Immunoelectron microscopy. Deeply anesthetized Long Evans rats were
perfused with 0.1 M sodium phosphate buffer, pH 7.4, containing 0.1 U/ml
sodium heparin, followed by perfusion with ~250 ml of a fixative con-
taining 4% paraformaldehyde and 0.2% glutaraldehyde in 0.1 M phos-
phate buffer, pH 7.4. The brains were left in the skull for 2 hr at 4°C,
removed, blocked, and post-fixed in the perfusion solution for 4 hr
(Naegele et al., 1988). Vibratome sections (100 uwm thick) were cut in
coronal plane and collected in cold 0.1 M phosphate buffer. For EM
embedding, sections were post-fixed in 1% osmium tetroxide for 30 min
on ice. Sections were dehydrated in ethanol and propylene oxide (EM
Sciences, Gibbstown, NJ). Tissue strips of striatum were embedded in LR
White (Ted Pella, Redding, CA) and cured for 48 hr at 56°C in a vacuum
oven. Semithin sections (1 um thick) were cut with an LKB ultramic-
rotome and stained with 1% toluidine blue and basic fuchsin. Ultrathin
sections (90 nm) were cut with a diamond knife and collected on 200
mesh Formvar-coated nickel grids (EM Sciences).

The procedure for EM immunolabeling is essentially as described by
Griffiths et al. (1984). Ultrathin sections were incubated on the grids in a
blocking solution of 1% BSA (type V, Sigma) in PBS, then in Nod sera
(1:10) or anti-synaptophysin (1:50). After extensive washing, primary
antibodies were detected by incubating grids in A-protein—gold probes
(15 nm, Drs. Posthuma and Slot, Utrecht University, The Netherlands)
diluted 1:45 in 0.1% BSA in PBS for 1 hr at room temperature. Control
sections were incubated in protein A-gold alone or in Nod antibody that
was preabsorbed with 20 pg of STEP, peptide. All incubations were
performed overnight at 4°C. Stained grids were washed in PBS, stabilized
in 1% glutaraldehyde, washed, then stained with 2.5% uranyl acetate for
10 min and 2% lead citrate for 5 min. Sections were examined in a Zeiss
transmission electron microscope with an acceleration voltage of 80 kV.

Phosphatase assays. Construction of glutathione S-transferase fusion
proteins in the bacterial expression vector pGEX-2T (Smith and Johnson,
1988) was performed as described previously (Lombroso et al., 1993).
The entire ORF STEP, was used for these constructs. Controls for these
experiments included a previously constructed STEP,,-GST and GST-
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Figure 1. STEPg, encodes a PTP with two transmembrane, two PEST sequences, and two potential SH3 binding sites. 4, The two hydrophobic domains
are indicated by the double underline, and the two polyproline-rich domains are indicated by a single underline. Two PEST sequences are enclosed in
brackets, and the phosphatase domain is shown in bold. Five conservative amino acid changes from the original rat STEP,, sequence are indicated by
asterisks and reflect the expected variations of sequence between mouse and rat. STEP,4 sequence begins at methionine residue 173 (indicated by a vertical
bar). B, Hydrophilicity analysis of the STEP,;-predicted amino acid sequence indicates two stretches of hydrophobic amino acids of 20 and 23 amino acids
are present at the N terminus. The plot was obtained using the MacVector sequence analysis software and a Kyte-Doolittle algorithm with a window of
seven amino acids. C, Schematic representation of STEP; and comparison with the cytosolic STEP variant STEP,,. The transmembrane domains (TM ),

PEST sequences, and polyproline domains (PP) are shown.

alone fusion protein (Lombroso et al., 1993). Transformed cells were
induced with isopropyl-B-D-thiogalactopyranoside (IPTG), and fusion
proteins were affinity-purified using glutathione-agarose beads (Sigma).
For some experiments, digestion of recombinant fusion proteins was

performed by the addition of excess thrombin (2 ng) to 150 ul of buffer
(50 mm Tris, pH 7.5, 150 mm NaCl, 2.5 mMm CaCl, 0.1%
2-mercaptoethanol) at room temperature for 1 hr with shaking. GST and
uncut fusion protein were removed by affinity purification against gluta-
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thione—agarose beads. Enzymatic assays were conducted in the presence
of 1% Triton X-100 and used paranitrophenyl phosphate (pNPP) as
substrate. Assays were performed in imidazole buffer, pH 6.2, with 1.9
mM pNPP for 30 min at 30°C, and the reactions were terminated by
adding 900 ul of 0.2N NaOH. The production of paranitrophenolate ion
was expressed as a concentration using a molar extinction coefficient of
1.78 X 10* M~ cm ™! at 410 nm.

RESULTS

Structural analysis of STEPg;

The full-length cDNA clone encodes a peptide of 541 amino acids
with a predicted MW of 61 kDa (Fig. 14). A single PTP catalytic
sequence VHCSAGIGRTG (residues 470—480) is present and
conforms to the consensus sequence (I/'V)HCXAGXXR(S/T)G
found in members of this family (Charbonneau et al., 1989;
Fischer et al., 1991). STEPq, contains the entire STEP,,; amino
acid sequence at its COOH end and 172 novel amino acids at its
N terminus. Five amino acids differ between the shared se-
quences. The original STEP,, clone was isolated from a rat brain
cDNA library, and these changes represent conservative amino
acid changes found among related species.

The 172 amino acids at the N terminus of STEPy; contain
several motifs that may have functional significance. First, there
are two potential transmembrane domains of 20 and 23 hydro-
phobic amino acids, respectively (Fig. 14,B). Second, two PEST
sequences are present (A4). These sequences are defined as
stretches of amino acids that begin and end with a positively
charged residue (H, K, or R) and contain at least eight internal
residues. The internal sequences are enriched for P, E, D, S, and
T and are identified by calculating a PEST score of between —50
and +35. To qualify as a PEST sequence, the PEST score value
must be >—5.0. When the stretch lacks E/D or S/T, then its PEST
score must be >0 (Wang et al., 1989). The two PEST sequences
of STEP,, have highly positive scores of 18 and 16, respectively.
Third, two polyproline-rich domains are present and match the
consensus sequence for the binding site for proteins containing
SH3 domains (Fig. 14) (Ren et al., 1993; Yu et al., 1994; Cohen
et al., 1995). Finally, a putative site for N-glycosylation is present
at the asparagine at amino acid position 91.

Northern analyses

Northern analyses were performed on various mouse organs to
determine the expression patterns of STEP; transcripts (Fig.
2). An ~3 kb transcript is detected in brain using a STEP;-
specific probe. These results are similar to what has been found
with all previously identified members of the STEP family,
which have been detected in brain only and not in the periph-
eral tissues tested (Lombroso et al., 1991, 1993; Sharma et al.,
1995; Raghunathan et al., 1996). In the present study, we also
probed against mRNA obtained from skeletal muscle and
testes. A transcript of ~3 kb is present in testes and a smaller
transcript (2.8 kb) in skeletal muscle. It is not yet known
whether these additional mRNA transcripts encode STEP-
related peptides or are the result of cross-hybridization with
unrelated transcripts. Prolonged exposure (1 week) did not
reveal hybridization signals from the other tissues tested (data
not shown). The similarity in size between the cDNA (3158 bp)
and the signal seen on Northern analysis suggests that the
full-length, or near full-length, cDNA was obtained.

Biochemical analyses
The distribution of STEPg, in brain was determined by immuno-
blotting after subcellular fractionations. As shown in Figure 34, a

Bult et al. « STEPg, in the CNS

o
Q
c S =
§c82528 %
s 3 5
Taad33de
kb
95—
7.5—
44—
24—
1.35—

Figure 2. STEP;; mRNA is enriched in the CNS. Poly(A")-selected
mRNA (2 pg) from the indicated mouse organs was loaded onto a
denaturing gel, electrophoresed, and transferred to nylon membrane. A
STEP,-specific probe was generated by PCR and randomly primed with
32P. After 18 hr of hybridization, the blot was washed and exposed with
intensifying screens overnight at —80°C.

group of STEP-immunoreactive bands with apparent MWs be-
tween 60 and 66 kDa were enriched in particulate fractions (P3
and LP2) and were not detected in soluble fractions (S3 and LS2).
P3 and LP2 fractions were enriched with small organelles and
membranes from either neuronal cell bodies or synaptosomes,
respectively. These results confirm earlier findings showing en-
richment of higher MW STEP-immunoreactive polypeptides in
particulate fractions, whereas lower MW STEP immunoreactive
proteins are detected in soluble as well as in particulate fractions
(Fig. 34) (Boulanger et al., 1995). As expected, the membrane
marker of synaptic vesicles, synaptophysin (p38) (Jahn et al.,
1985), was detected in particulate fractions only.

To establish the relationship between the higher MW STEP-
immunoreactive bands and the product of the STEP;, cDNA, we
compared the mobility of the recombinant STEP; protein with
endogenous STEP isoforms. For this purpose, the STEP,,-GST
fusion protein was digested with thrombin before immunoblotting
(Fig. 3B). The recombinant protein had a very similar mobility to
the higher MW membrane-enriched isoforms present in P3 (Fig.
3B, lane 2), suggesting that the isolated cDNA encodes one of
these higher MW STEP variants. However, this experiment did
not allow us to identify the specific polypeptide that corresponds
to STEP,,;.

Next, we assessed whether varying levels of glycosylation might
generate the multiple STEP-immunoreactive bands observed in
particulate fractions. N-glycosidase F selectively removes
asparagine-linked oligosaccharides from glycoproteins and should
alter the electrophoretic mobility of STEP,, if it were glycosy-
lated. Treated samples were separated by SDS-PAGE, and im-
munoreactivity for STEP,, and the glycoprotein synaptophysin
was detected on Western blots (Fig. 3C). As reported previously
(Rehm et al., 1986), digesting membrane fractions with
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Figure 3. STEP, in brain: biochemical analysis. 4, Immunoblots of subcellular fractionation of rat brain. Equivalent amounts of protein from each
fraction (50 pg) were subjected to SDS-PAGE, transferred to nitrocellulose, and probed with the STEP; monoclonal antibody 23ES and with a polyclonal
antibody against synaptophysin (p38). H, Total homogenate; PI, consisting primarily of unbroken cells and nuclei; P2, plasma membrane and larger
organelles; P3, membranes of smaller organelles; S3, cytosol; LPI, pellet after hypotonic lysis of synaptosomes and contains larger organelles within
synaptosomes; LP2, high-spin pellet of LS1 supernatant and containing microsomal fraction within synaptosomes; LS2, supernatant of LP2 spin. MW
standards are shown on the left. B, Thrombin digestion of STEP,;-fusion protein. The released recombinant STEP polypeptide (lane 1) was compared
with the mobilities of endogenous STEP proteins enriched in P3 fraction (lane 2). C, N-glycosidase F treatment of P3 membranes. Samples were processed
at 37°C overnight in the presence (+) or absence (—) of enzyme. Blots were processed with antibodies against STEP (fop) or against the control
synaptophysin ( p38, bottom). D, Distribution of STEP, after sucrose density gradient fractionation and comparison with ER and non-ER-associated
proteins. Membrane fractions enriched for the higher MW STEP-immunoreactive peptides (P3 and LP2) were applied to continuous sucrose gradients
(0.4-2 m). After ultracentrifugation, equal volumes from each of 12 aliquots were loaded onto 10% SDS polyacrylamide gels and processed in parallel
with antibodies against calnexin, STEP, and synaptophysin ( p38), as indicated on the right. MW markers are shown on the left.

N-glycosidase F resulted in a faster electrophoretic mobility of
synaptophysin (p38), whereas none of the STEP-immunoreactive
bands had altered mobilities. These results indicate that the
multiple higher MW STEP-immunoreactive bands do not corre-
spond to different N-glycosylated forms of a single STEP
polypeptide.

Because STEP,, immunoreactivity is enriched in P3 and LP2
fractions, these fractions were processed further through contin-
uous sucrose density gradients. The pattern of STEP immunore-
activity was compared with that of calnexin and synaptophysin in
Figure 3D. Calnexin is a resident protein of the ER (Wada et al.,
1991), whereas synaptophysin is an intrinsic membrane protein of
synaptic vesicles (Jahn et al., 1985). In LP2, the peak of STEP-
immunoreactivity for the higher MW STEP isoforms colocalized
with the peak of calnexin immunoreactivity (fraction 7; 1.04 m
sucrose) but not with the peak of synaptophysin (fractions 3-4;
0.61-0.69 M sucrose). In P3 fractions, the peak of STEP-
immunoreactivity also overlapped with the peak of calnexin (frac-
tion 9; 1.35 ™ sucrose), although a second less intense STEP-
immunoreactivity peak was detected in fraction 3 (0.60 M sucrose).
These results suggest that the higher MW STEP isoforms are
enriched in the ER.

The primary amino acid sequence of STEP,, predicts for an
intrinsic membrane protein with two transmembrane spanning
domains. Consistent with that sequence, the higher MW STEP-
immunoreactive bands were efficiently released from particulate

0.32M M 0.1MNa,CO;  Triton
Sucrose NaCl pH 11.5 X-100
P3 P S P S P S P S
66— -- h— F=% .

Figure 4. STEPg, is an integral membrane protein. Membrane fractions
(P3) were washed in different buffer conditions as indicated and spun, and
pellets (P) and supernatants (S) were collected. Protein (~50 ug) from
each fraction was subjected to SDS-PAGE, transferred to nitrocellulose,
and probed with the monoclonal antibody 23ES. The majority of STEP
isoforms remain membrane-associated until washed in 2% Triton X-100.
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Figure 5. STEPg, immunoreactivity is
localized in the perinuclear region. A,
Immunoperoxidase labeling of cortical
neurons with Nod antisera showed that
the perinuclear region of pyramidal neu-
rons was labeled. B, Preabsorption of
Nod antisera with STEP;, fusion protein
eliminated all immunofluorescent stain-
ing in control sections. C—F, To deter-
mine whether STEP immunoreactivity
was associated with the ER, immunoflu-
orescent double-labeling studies were
performed with the Nod antisera (C, E)
and an antibody specific for PDI, a res-
ident protein of the ER (D, F). In cor-
tical neurons (C, D), STEP colocalized
with PDI in proximal dendrites and sur-
rounding the nucleus. A similar pattern
was also seen in hippocampal neurons
(E, F). Scale bar, 10 um.

fractions only after washes with detergents, including 2% Triton
X-100 (Fig. 4, lanes 6, 7) and SDS (data not shown).

Immunocytochemical analyses

Peroxidase staining or two-color immunofluorescent double labeling
was carried out to compare the subcellular distribution of STEPq;
with PDI, a resident protein of the ER, that acts as a catalyst for
rearrangement of disulfide bonds (Vaux et al., 1990). Figure 54
shows punctate immunoperoxidase staining of STEP, in pyramidal
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neurons in the cerebral cortex. The staining in the perinuclear region
extended into proximal dendrites. Immunofluorescent double label-
ing is shown in the remaining panels of Figure 5. Pyramidal neurons
of the cerebral cortex contained both STEP; (C) and PDI (D)
immunoreactivity in the perinuclear region. Similarly, in pyramidal
neurons of the hippocampus (Fig. 5E,F), these two markers colo-
calized in the perinuclear region. PDI immunoreactivity did not
extend far into dendrites or axons. Additionally, in the striatum, most
neurons exhibited colocalization of both markers in the perinuclear
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region (data not shown). In contrast to the punctate perinuclear
labeling by STEPq,, antisera, a more diffuse pattern of staining was
observed with either monoclonal or polyclonal antisera that recog-
nized both cytosolic and membrane-associated forms of STEP (Lom-
broso et al., 1993; Boulanger et al., 1995). In control sections, STEP
immunostaining was abolished by preabsorbing antiserum with
STEPq, fusion protein (Fig. 5B).

The perinuclear staining for STEP isoforms was confirmed at
the ultrastructural level with postembedding immunogold label-
ing. In the perinuclear region, punctate gold labeling was ob-
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Figure 6. Electron microscopy demon-
strates localization of STEP, to ER. In
sections incubated in Nod antibody against
STEPg,, a high density of gold particles
was evident over free ribosomes (4) and
the rough ER (B). Preabsorption of STEP
antisera with STEP peptide-abolished
staining (C). Specificity of staining was also
shown by labeling sections with synapto-
physin antibodies, which failed to label
rough ER (D) but gave strong labeling of
synaptic vesicles in terminal boutons (F).
By contrast, STEP immunogold staining
was not observed over more distal pro-
cesses, including axons and synaptic bou-
tons (E). In A and D, arrows indicate nu-
clear envelope. In 4 and C, boxes highlight
some gold particles to distinguish them
from ribosomes. In B, arrowheads show
labeled rough ER. Scale bar, 0.5 um.

served over free ribosomes (Fig. 64) and rough ER (B). In
control sections, immunogold labeling was abolished by preab-
sorption of antiserum with STEP, peptide (C) or by omission of
primary antibodies (data not shown). The Nod antiserum also
failed to stain distal processes of neurons, including synaptic
boutons (E). The specificity of the staining was verified by com-
paring STEP labeling with that of an antibody against synapto-
physin (Fig. 6D,F). In contrast to the STEP antiserum, synapto-
physin antiserum gave little or no background labeling of rough
ER in the perinuclear region (D), whereas synaptic terminals were
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STEP61

STEP46

Figure 7. Transfection of STEPg, into fibroblasts shows a reticular stain-
ing pattern relative to the cytosolic STEP, variant. STEPy; and STEP
cDNAs were transiently transfected into CHO cells and detected by
immunohistochemistry using the monoclonal antibody 23E5 followed by
rhodamine-conjugated goat anti-mouse IgG. In transfected cells, STEP,
presented the characteristic reticular distribution of proteins associated
with the ER (top). Note the perinuclear accumulation of STEPg;. In
contrast, STEP,, immunoreactivity was evenly distributed in the cyto-
plasm of transfected cells, consistent with STEP , being a soluble cytosolic
protein (bottom). Scale bar, 22 um.

heavily labeled (F). Omission of synaptophysin antibody in the
incubation steps eliminated immunogold labeling of synaptic ter-
minals (data not shown).

Transfection experiments

The immunohistochemical and electron microscopic experi-
ments presented above demonstrate that members of the STEP
family are present in the ER. An independent line of investi-
gation supports these findings. The full ORFs for STEP,, and
the cytosolic variant STEP,, were transiently transfected into
CHO cells, a fibroblast cell line that does not normally express
STEP gene products. STEP proteins were localized using im-
munocytochemical staining with the monoclonal antibody
23ES, which recognizes both STEP isoforms. A reticular pat-
tern of staining was seen after STEP,, transfection (Fig. 7, fop).
STEP,,, instead, was evenly distributed in the cytoplasm, as
expected for a soluble cytosolic protein (botfom). The poly-
clonal antibody Nod, generated to recognize membrane and
not cytosolic variants, produced a similar staining pattern in
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Figure 8. STEPy, is less active than the cytosolic variant STEP,,. The
phosphatase activity of the recombinant proteins STEP,; and STEP,; was
compared. STEPy; had approximately sixfold less phosphatase activity
than STEP,,. STEP,-GST and STEP,, GST fusion proteins were affinity-
purified on glutathione-agarose beads after induction by IPTG and as-
sayed for phosphatase activity in the presence of 1% Triton-X 100 using
the substrate pNPP. The values of STEPy; and STEP,, represent the
mean * SE of two separate assays. GST fusion protein alone (GST-alone)
is the negative control.

STEP,,-transfected cells but, as expected, did not stain
STEP c-transfected cells (data not shown).

Tyrosine phosphatase activity

The phosphatase activity of STEP,, was compared with the activ-
ity of the cytosolic variant STEP,,. Because it was possible that
the STEP,, recombinant protein might form protein aggregates
through its two hydrophobic domains, all phosphatase assays were
performed in the presence of Triton X-100. STEP;-GST fusion
protein showed phosphatase activity against pNPP substrate, but
the level of activity was approximately sixfold lower than that of
STEP ,,-GST fusion protein (Fig. 8). Phosphatase assays were also
repeated after thrombin cleavage and affinity purification of STEP
polypeptides, and STEP,; again had approximately 10-fold less
activity than STEP,,. The decrease in STEP,; activity thus was
not likely to be attributable to the interference of GST. As
expected, GST fusion protein alone did not have phosphatase
activity.

Both STEP,,-GST and STEP,,-GST were inhibited by the
tyrosine phosphatase inhibitors sodium vanadate and ammonium
molybdate (data not shown). The ICs, values for sodium vanadate
were 200 nm for STEP,-GST and 1 mm for STEP,-GST. The
1C,, values for ammonium molybdate were 400 nm for STEP ;-
GST and 200 nm for STEP,.-GST. These values are similar to
those obtained previously for STEP,, (Lombroso et al., 1993).

DISCUSSION

A key point emerging from the present study is that the intracel-
lular distribution of STEP,, is markedly different from previously
characterized STEP family members. The distinctive localization
of STEP,, to membrane compartments has been shown by several
types of experiments. Taken together, the subcellular fraction-
ations, detergent extractions, and sucrose density gradients clearly
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indicate that STEPy, is an integral membrane protein and is
enriched in fractions in which the endoplasmic reticular protein
calnexin is also enriched. Immunofluorescent double labeling for
PDI and STEPg,;, as well as electron microscopic localization,
demonstrates that STEPg, is most enriched in the perinuclear ER.
This is in contrast to the more diffuse pattern of neuronal staining
that was seen with antibodies generated to recognize all STEP
isoforms (Lombroso et al., 1993; Boulanger et al., 1995), suggest-
ing that the polyclonal antibody (Nod) recognizes a subgroup of
STEP isoforms.

The transfection experiments provide additional support for
these findings. In isolation, transfection experiments must be
viewed with caution, because it is known that some proteins are
not targeted to their proper final destination when transfected
into cells that do not normally process them. However, the pur-
pose of these experiments was to determine the targeting pattern
of recombinant STEP, in cells that do not have additional STEP
isoforms present and compare it to the pattern seen with the
cytosolic variant STEP,.. The results lend support to the hypoth-
esis that the N-terminal region of STEP,, confers to this protein
an intracellular localization pattern that is distinct from the cyto-
solic pattern seen with STEP 4.

Although these experiments do not rule out the possibility that
a pool of STEP; is associated with other membrane compart-
ments, they clearly show that STEPg, is enriched in the ER of
neurons. The presence of two hydrophobic domains in STEP,
that are not present in other known STEP variants suggests that
these domains provide the necessary information for the selective
compartmentalization of STEP; to neuronal ER. The differential
centrifugation results indicate that several other higher MW
membrane-associated STEP isoforms exist, as well as a pool of
lower MW STEP protein that are present in both particulate and
soluble fractions (Fig. 34). It is possible that these STEP isoforms
will also be found to localize to the ER or to additional intracel-
lular membranes. However, the antiserum used in this study failed
to detect SDS-denatured proteins on Western blots and could not
be used to test this hypothesis. To identify the subcellular targets
of these other variants, specific antibodies will need to be
generated.

The present study supports recent findings of important amino
acid domains outside the phosphatase domain. For example, PTPs
have been identified containing Src homology 2 domains (Shen et
al., 1991; Matthews et al., 1992; Plutzky et al., 1992; Yi et al., 1992;
Pawson, 1995), and polyproline-rich sequences that match the
consensus sequence for the binding site of Src homology 3 do-
mains have also been identified (Sawada et al., 1994). These
domains are thought to provide a mechanism by which PTPs
associate with downstream effector molecules.

A number of studies have demonstrated that alternative splic-
ing is responsible for targeting PTPs to distinct intracellular re-
gions and compartments (Matthews et al., 1990; Price, 1992;
McLaughlin and Dixon, 1993; Oon et al., 1993; Mauro and Dixon,
1994; Elson and Leder, 1995). This has the effect of compartmen-
talizing PTPs in the vicinity of their substrates or anchoring them
to membrane storage sites until released or activated by appro-
priate intracellular signals. The present study on STEP; extends
these findings to the CNS. We have shown that alternative splicing
within the STEP family leads to the production of either cytosolic
polypeptides or proteins targeted to the ER.

Although the functional significance of having STEP; associ-
ated with the ER is not yet known, recent studies on a sterol
regulatory element-binding protein 1 (SREBP-1) are relevant.
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SREBP-1 is a transcription factor that is synthesized as a 125 kDa
precursor attached to the nuclear envelope and ER (Wang et al.,
1994). Under the appropriate cellular signal (low intracellular
concentration of cholesterol), the membrane-bound precursor is
cleaved to generate a smaller cytosolic fragment that rapidly
translocates to the nucleus, where it activates transcription of
proteins involved in sterol pathways (Wang et al., 1994).

Several observations suggest that an analogous mechanism
might be at work with STEP,,. We have shown that STEP,, is
bound to the ER membrane. In addition, PEST sequences are
present, and these sequences are thought to signal proteolytic
cleavage of the proteins in which they are found. They have now
been identified in several additional PTPs (Matthews et al., 1992;
Takekawa et al., 1992; Yang et al., 1993; Garton and Tonks, 1994),
although it has not yet been determined in these proteins whether
the PEST sequences are functional. If proteolysis of STEP; were
to occur, then the predicted MW of the largest released fragment
would be ~44 kDa. This size is close to the observed mobilities of
some members of the cytosolic group of STEP-immunoreactive
proteins. In future studies, it may be possible to determine
whether higher MW STEP proteins are cleaved to release the
cytosolic isoforms by employing [**S]methionine pulse chase ex-
periments. Alternatively, careful peptide mapping or amino acid
sequencing of each of the STEP immunoreactive bands will be
necessary to determine the relationship of the different variants to
each other.

Similarly to STEP, two other intracellular PTPs that have been
localized to the ER (Frangioni et al., 1993; Lorenzen et al., 1995).
It is interesting to note that proteolysis has been suggested as a
mechanism that modulates the enzymatic activity for both of these
PTPs. Cleavage of the C-terminal sequence of T-cell PTP stimu-
lates its phosphatase activity in vitro (Cool et al., 1990; Zander et
al., 1991), and PTP1B shows a twofold increase of phosphatase
activity after limited proteolysis by calpain (Frangioni et al., 1993).

In this study, we have shown that the recombinant membrane-
associated isoform STEP, has significantly less phosphatase ac-
tivity than the cytosolic variant STEP,,. This was a surprising
observation, because STEP, is contained entirely within STEP,,
and the only difference in their sequences are the novel 172 amino
acids at the N terminus of STEP,,. There are several possible
explanations for the observed decrease in enzymatic activity. The
N-terminal extension of the recombinant STEP,, protein may
directly interfere by limiting the accessibility of pNPP to the
catalytic domain. In addition, aggregation of recombinant protein
is likely to occur through the two hydrophobic domains. We
attempted to address these issues by performing all enzymatic
assays in the presence of detergent as well as digesting with
thrombin before phosphatase assays. The difference in activity
remained, suggesting that neither protein aggregation nor inter-
ference by GST accounts for the decrease of phosphatase activity
seen with STEP,. Nonetheless, the assays were conducted against
an artificial substrate, and additional work is required to demon-
strate whether this decrease in activity occurs in vivo.

In addition to the PEST sequences, STEP, has two polyproline
motifs that match the consensus sequence for the binding site of
SH3 domains (Ren et al., 1993; Cohen et al., 1995). Each of the
PEST sequences contains one of the polyproline-rich domains
and suggests a possible functional relationship. Protein—protein
interactions are capable of masking underlying PEST signals,
thereby preventing proteolysis of these proteins and prolonging
their half-life (Shanklin et al., 1987; Rechsteiner, 1988).

Based on these considerations, a model for how STEP,; func-
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tions within neurons can now be proposed. STEP, is normally
attached to membrane compartments. In this form, STEP,, inter-
acts with other protein(s), and these protein—protein interactions
mask underlying PEST sequences. Only after neuronal stimula-
tion (e.g., growth factor or neurotransmitter binding that leads to
phosphorylation or Ca** influx) are the protein—protein com-
plexes disrupted and the proteolytic sites exposed. STEP; is then
cleaved, and smaller isoforms are released into the cytosol.

In conclusion, the present study has characterized a new mem-
ber of the STEP family of brain-enriched PTPs. We have shown
that this family consists of cytosolic and transmembrane isoforms
produced by alternative splicing mechanisms. The biological ef-
fects of alternative splicing include changing the subcellular local-
ization of protein isoforms as well as modulating their enzymatic
activity. The significance of these mechanisms is especially evident
when the proteins are regulatory molecules, such as PTPs, in
which subtle changes in their structure may effect their localiza-
tion pattern, enzymatic activity, or potential access to substrate
molecules.
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